Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4,12-Bis(2,2-dibromovinyl)[2.2]paracyclophane

Sébastien Clément, ${ }^{\text {a }}$ Laurent Guyard, ${ }^{\text {a }}$ Michael Knorr, ${ }^{\text {a }}$ Christian Däschlein ${ }^{\mathrm{b}}$ and Carsten Strohmann ${ }^{\mathrm{b} *}$

${ }^{\text {a }}$ Institut UTINAM UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, La Bouloie, 25030 Besançon, France, and ${ }^{\text {b }}$ Technische Universität Dortmund, Anorganische Chemie Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Received 19 December 2008; accepted 20 January 2009
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.032 ; w R$ factor $=0.073$; data-to-parameter ratio $=18.7$.

In the title compound, $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Br}_{4}$, both vinylic substituents were introduced by a Corey-Fuchs reaction using 4,12diformyl[2.2]paracyclophane as starting material. The title compound may be used as a valuable precursor for the synthesis of diethynyl[2.2]paracyclophane. The title molecule is centrosymmetric with a crystallographic center of inversion between the centers of the two phenyl rings. A strong tilting is observed with an interplanar angle between the best aromatic plane and the vinyl plane of $49.4(5)^{\circ}$. No significant intermolecular interactions are found in the crystal.

Related literature

For related structures of halovinyl compounds, see: Clément et al. (2007a,b); Jones et al. (1993); Hua et al. (2006). For ethynylfunctionalized[2.2]paracyclophanes, see: Jones et al. (2007). For the Corey-Fuchs reaction, see: Corey et al. (1972). For applications of [2.2]paracyclophanes, see: Hopf et al. (2008). For an alternative to the classical Sonogashira synthesis, see: Morisaki et al. (2003).

Experimental

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Br}_{4}$
$M_{r}=575.97$
Orthorhombic, Pbca
$V=1867.9(3) \AA^{3}$
$Z=4$
$a=12.155$ (1) £
$b=8.3819$ (9) A
Mo $K \alpha$ radiation
$\mu=8.62 \mathrm{~mm}$
$c=18.335$ (2) \AA
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.141, T_{\text {max }}=0.418$
16030 measured reflections 2043 independent reflections 1766 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.073$
$S=1.08$
2043 reflections

109 parameters H -atom parameters constrained $\Delta \rho_{\text {max }}=0.84 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.60 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2001); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We are grateful to the French Ministère de la Recherche et Technologie for a PhD grant for SC. The CNRS is acknowledged for financial support. CS thanks the DFG for financial support. CD thanks the Studienstiftung des deutschen Volkes for a doctoral scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2094).

References

Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Clément, S., Guyard, L., Knorr, M., Dilsky, S., Strohmann, C. \& Arroyo, M. (2007a). J. Organomet. Chem. 692, 839-850.
Clément, S., Guyard, L., Knorr, M., Villafañe, F., Strohmann, C. \& Kubicki, M. M. (2007b). Eur. J. Inorg. Chem. pp. 5052-5061.

Corey, E. J. \& Fuchs, P. L. (1972). Tetrahedron Lett. 13, 3769-3776.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hopf, H. (2008). Angew. Chem. Int. Ed. 47, 2-7.
Hua, C.-H., Wei, Y.-P., Nan, Y.-F., Li, X.-X. \& Sun, L.-D. (2006). Acta Cryst. E62, o3742-o3743.
Jones, P. G., Bubenitschek, P., Grahn, W. \& Remmers, D. (1993). Z. Kristallogr. 208, 351-353.
Jones, P. G., Dix, I. \& Hopf, H. (2007). Acta Cryst. C63, o468-o473.
Morisaki, Y., Fujimura, F. \& Chujo, Y. (2003). Organometallics, 22, 3553-3557.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

4,12-Bis(2,2-dibromovinyl)[2.2]paracyclophane

S. Clément, L. Guyard, M. Knorr, C. Däschlein and C. Strohmann

Comment

In the context of our research in developing novel π-conjugated functionalized [2.2]paracyclophanes and ferrocenes (Clément et al., 2007a) for potential applications in coordination chemistry, we have recently reported an alternative to the classical Sonogashira synthesis (Morisaki et al., 2003) for the synthesis of ethynyl functionalized [2.2]paracyclophanes (Scheme 2). Our route involves a Corey-Fuchs reaction (Clément et al., 2007b) and subsequent dehydobromation induced by a strong base. In the first step, an ylide species, formed in situ by the interaction of zinc dust, CBr_{4} and PPh_{3}, reacts with the formyl derivative $\mathbf{1 a}$ or $\mathbf{1 b}$ leading to the dibromoolefin derivatives $\mathbf{2 a}$ or $\mathbf{2 b}$. The molecular structure of the vinylic intermediate $\mathbf{2 b}$ was elucidated by an single-crystal X-ray diffraction study (Figure 1).
$\mathbf{2} \mathbf{b}$ possesses a crystallographic center of inversion in the middle of the cyclophane framework. Bond lengths and angles may be considered as normal. Distortions typical of [2.2]paracyclophane systems, e.g. lengthened C-C bonds and widened angles in the bridges, narrowed ring bond angles at the bridgehead atoms, and boat-like distortion of the rings (the bridgehead atoms lie significantly out of the plane of the other four ring atoms) are observed. As previously noticed for the monodibromoolefin compound $\mathbf{2 a}$, the alkenyl unit of $\mathbf{2 b}$ is strongly tilted. The two best planes of the arene (C3, C4, C5, C6, $\mathrm{C} 7, \mathrm{C}$; plane 1) and the vinyl-group ($\mathrm{Br} 1, \mathrm{Br} 2, \mathrm{C} 1, \mathrm{C} 2$; plane 2) possess a cutting angle of the normals of $49.4(5)^{\circ}$

Contrary to a recently published, related system, no significant intermolecular interactions are observed for $\mathbf{2 b}$ due to inproper orientation of the molecules relative to each other (Hopf et al., 2007).

In the light of our recent work on the reactivity of (2,2-dibromovinyl)ferrocene towards thiolates (Clément et al., 2007b), the vinylic intermediates $\mathbf{2 a}$ and $\mathbf{2 b}$ should be promising starting materials for building new ligand systems. Synthesis, reactivity and photochemical properties of these new compounds will be reported in due course.

Experimental

$\mathrm{PPh}_{3}(4.20 \mathrm{~g}, 16.0 \mathrm{mmol}), \mathrm{CBr}_{4}(5.31 \mathrm{~g}, 16.0 \mathrm{mmol})$ and zinc dust $(1.05 \mathrm{~g}, 16.0 \mathrm{mmol})$ are placed in a Schlenk tube and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{ml})$ is added slowly. The mixture is stirred at room temperature for 28 h . Then, $\mathbf{1} \mathbf{b}(1.05 \mathrm{~g}, 4.00 \mathrm{mmol})$, dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, is added and stirring is continued for 2 h . The reaction mixture is extracted with three 50 ml portions of pentane. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is added when the reaction mixture became too viscous for further extractions. The extracts are filtered and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether (1:1). Slow evaporation afforded white crystals of $\mathbf{2} \mathbf{b}$ (Yield: 94%). mp $183^{\circ} \mathrm{C}$, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 3.00\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{CH}_{2}\right), 3.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 6.43\left(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}\right), 6.59\left(\mathrm{~d}, 2 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}\right), 6.65$ (dd, $\left.2 \mathrm{H}, J=8.2 \mathrm{~Hz}, J=2.1 \mathrm{~Hz}, \mathrm{H}_{\text {aromatic }}\right), 7.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CBr}_{2}\right)$ p.p.m.. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 34.9,35.4(\mathrm{C}-1, \mathrm{C}-2$, C-9, C-10), 90.5 (C-18, C-20), 130.5, 134.0, 135.7, 135.8 (C-5, C-7, C-8, C-12, C-13, C-15, C-16, C-17), 136.2 (C-4, C-16),

supplementary materials

138.1, $139.3(\mathrm{C}-3, \mathrm{C}-6, \mathrm{C}-11, \mathrm{C}-14)$ p.p.m.. UV-vis $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left[\mathrm{l}_{\max } \mathrm{nm}(e)\right]: 229\left(57544 M^{-1} . \mathrm{cm}^{-1}\right), 266\left(20417 M^{-1} . \mathrm{cm}^{-1}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Br}_{4}: C, 41.71, \mathrm{H}, 2.80$, Found: C, 41.63, H, 2.71.(Clément et al., 2007b).

Refinement

Refinement was accomplished by full-matrix least-squares methods (based on Fo2, SHELXL97); anisotropic thermal parameters for all non-H atoms in the final cycles; hydrogen atoms were placed in calculated positions and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. ORTEP plotof 2b with 30% probability level.

4,12-Bis(2,2-dibromovinyl)[2.2]paracyclophane

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Br}_{4}$
$M_{r}=575.97$

Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=12.155$ (1) \AA
$b=8.3819$ (9) \AA
$c=18.335(2) \AA$
$V=1867.9(3) \AA^{3}$
$Z=4$
$F_{000}=1104$
$D_{\mathrm{x}}=2.048 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 456 K
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 1766 reflections
$\theta=2.2-27.0^{\circ}$
$\mu=8.62 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Irregular, white
$0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=173 \mathrm{~K}$
CCD scans

2043 independent reflections
1766 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=27.0^{\circ}$
$\theta_{\min }=2.2^{\circ}$

Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.141, T_{\text {max }}=0.418$
16030 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.073$
$S=1.08$
2043 reflections
109 parameters
Primary atom site location: structure-invariant direct methods
$h=-15 \rightarrow 15$
$k=-10 \rightarrow 10$
$l=-23 \rightarrow 23$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0298 P)^{2}+3.2824 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.84 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.60 \mathrm{e} \AA^{-3}$
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br1	$0.94392(3)$	$0.12568(5)$	$0.72066(2)$	$0.03823(13)$
Br 2	$1.18942(3)$	$0.01277(4)$	$0.70021(2)$	$0.03403(12)$
C 1	$1.0695(3)$	$0.1284(4)$	$0.66105(19)$	$0.0223(7)$
C 2	$1.0750(3)$	$0.1954(4)$	$0.59555(18)$	$0.0216(7)$
H 2	1.1423	0.1819	0.5699	0.026^{*}
C3	$0.9893(3)$	$0.2882(4)$	$0.55781(18)$	$0.0198(6)$
C4	$0.9745(3)$	$0.2705(4)$	$0.48219(18)$	$0.0215(7)$
C5	$0.8859(3)$	$0.3511(4)$	$0.45039(19)$	$0.0250(7)$
H5	0.8626	0.3226	0.4027	0.030^{*}
C6	$0.8316(3)$	$0.4717(4)$	$0.4873(2)$	$0.0241(7)$
H6	0.7720	0.5255	0.4645	0.029^{*}
C7	$0.8632(3)$	$0.5151(4)$	$0.55752(19)$	$0.0227(7)$
C8	$0.9336(3)$	$0.4115(4)$	$0.59427(18)$	$0.0213(7)$
H8	0.9442	0.4246	0.6453	0.026^{*}

C9	$0.8418(3)$	$0.6819(4)$	$0.5856(2)$	$0.0280(8)$
H9A	0.8312	0.6778	0.6391	0.034^{*}
H9B	0.7729	0.7228	0.5636	0.034^{*}
C10	$1.0610(3)$	$0.1987(4)$	$0.43258(19)$	$0.0263(7)$
H10A	1.0256	0.1650	0.3864	0.032^{*}
H10B	1.0918	0.1023	0.4562	0.032^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br 1	$0.0365(2)$	$0.0460(2)$	$0.0321(2)$	$0.01147(17)$	$0.01440(17)$	$0.01208(17)$
Br 2	$0.0273(2)$	$0.0414(2)$	$0.0335(2)$	$0.00426(16)$	$-0.00318(15)$	$0.01310(16)$
C 1	$0.0172(15)$	$0.0229(15)$	$0.0267(17)$	$0.0017(13)$	$-0.0003(13)$	$-0.0005(13)$
C 2	$0.0174(15)$	$0.0218(15)$	$0.0256(17)$	$0.0000(12)$	$0.0026(13)$	$0.0015(13)$
C 3	$0.0163(15)$	$0.0181(15)$	$0.0251(17)$	$-0.0045(12)$	$0.0000(13)$	$0.0023(12)$
C4	$0.0238(17)$	$0.0148(14)$	$0.0260(17)$	$-0.0054(12)$	$-0.0006(13)$	$-0.0006(12)$
C5	$0.0257(17)$	$0.0270(17)$	$0.0223(18)$	$-0.0090(14)$	$-0.0035(14)$	$0.0024(13)$
C6	$0.0173(16)$	$0.0240(16)$	$0.0309(19)$	$-0.0051(13)$	$-0.0015(14)$	$0.0065(14)$
C7	$0.0182(16)$	$0.0245(16)$	$0.0254(18)$	$-0.0033(13)$	$0.0047(13)$	$0.0034(13)$
C8	$0.0198(16)$	$0.0228(16)$	$0.0212(16)$	$-0.0022(13)$	$0.0011(13)$	$0.0024(12)$
C9	$0.0298(18)$	$0.0275(17)$	$0.0266(19)$	$0.0080(14)$	$0.0060(15)$	$0.0040(14)$
C10	$0.0342(19)$	$0.0224(15)$	$0.0223(17)$	$-0.0003(14)$	$-0.0004(15)$	$-0.0027(13)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 1$	$1.878(3)$
$\mathrm{Br} 2-\mathrm{C} 1$	$1.892(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.328(5)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.473(4)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 3-\mathrm{C} 8$	$1.405(4)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.406(5)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.399(5)$
$\mathrm{C} 4-\mathrm{C} 10$	$1.515(5)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.385(5)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	$124.9(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 2$	$121.4(2)$
$\mathrm{Br} 1-\mathrm{C} 1-\mathrm{Br} 2$	$113.53(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$127.8(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	116.1
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	116.1
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4$	$119.0(3)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$120.4(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.9(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$117.3(3)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 10$	$118.4(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 10$	$123.0(3)$

sup-4

supplementary materials

C6-C5-C4	$121.1(3)$	$\mathrm{C} 4-\mathrm{C} 10-\mathrm{C} 9^{\mathrm{i}}$	$113.1(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.5	$\mathrm{C} 4-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.0
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.5	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.0
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$120.7(3)$	$\mathrm{C} 4-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.0
C5-C6-H6	119.6	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.0
C7-C6-H6	119.6	$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	107.8
Symmetry codes: $(\mathrm{i})-x+2,-y+1,-z+1$.			

Fig. 1

supplementary materials

Fig. 2

